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ABSTRACT

The hypercube is a good host graph for the embedding of
networks of processors because of its low degree and low
diameter. Graphs such as trees and arrays can be embedded
into a hypercube with small dilation and expansion costs,
but there are classes of graphs which can be embedded into
a hypercube only with large expansion cost or large dila-
tion cost.
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1. Introduction

- In the study of parallel computing, networks of processors

are often organized into various configurations such as trees,

pyramids, and mesh arrays [1-11]. These configurations can be

represented as graphs. Using the properties and structures of

the underlying graph effectively, the computation and communica-

tion speeds can often be improved.

A hypercube of degree d has 2d nodes and each node has

exactly d neighbors. The distance between any two nodes is

less than or equal to d. Both the diameter of the hypercube

and the degree of the nodes grow very slowly (logarithmically)

with respect to the number of nodes in the hypercube. There-

fore, the hypercube is a good configuration for networks of

processors.

This paper studies the mapping of different network con-

figurations into a hypercube network. In other words, it

studies the one-to-one assocation of the processors of a net-

work with the processors of a hypercube network and the costs

of such mappings. The costs considered are the distances of

images of adjacent processors and the size of the hypercube

with respect to the number of processors in the given network.

The process can be viewed as embedding of a graph (the under-

lying structure of the network) into a hypercube and the dila-

tion and expansion costs of the embedding [12,13]. Graph embedding

problems have applications in a wide variety of computational situ-

ations [13-18]. Embedding of graphs into trees and some issues

of graph embedding have been studied by Rosenberg et al. in [13,19-21].
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In this paper, the host graph in the embedding is always a

hypercube. Section 2 defines and discusses some of the

basic properties of hypercubes and graph enibeddings. The

rest of the paper discusses embedding of trees and graphs

in hypercubes.
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2. Hypercubes and graph embeddings

A hypercube of degree d has 2d nodes and each node has d

neighbors. The distance between any two nodes is less than

or equal to d. The nodes in a hypercube may be labelled with

binary numbers of length d. Two nodes ala2...ad and blb2...bd
d

are adjacent to each other if and only if E Iai-bil=l.
i=1

A degree d+l hypercube Cd+1 can be viewed as two degree d

hypercubes OCd and lCd such that every node Oala 2...ad in OCd

is adjacent to one and only one node la1a2.. .ad in lCd. Equi-

valently, given two degree d hypercubes, they can be combined

into a degree d+1 hypercube by making the appropriate connec-

tions. Moreover, we can specify how the two hypercubes are to

be combined as long as the conditions specified are consistent

in the sense that it is possible to relabel one of the hyper-

cubes so that all the neighbor relations are preserved. This

is the same as applying a sequence of rigid transformations

of rotations and reflections to a hypercube. For example, one

can specify which node in 1Cd is to become the neighbor of the

node A in OCd and also how the neighbors of A are to be mapped

into neighbors of this node in 1Cd.

Another property of the hypercube which is useful in later

sections is that it is Hamiltonian. This can easily be proved

by induction and using the fact that Cd+l is obtained from two

Cd's with the appropriate connections.

An embedding f of a graph G=(V,E) in a graph G'=(V',E') is

a one-to-one function f: V-V'. The cost of an embedding f is

max(distance(f(A),f(B)) I (A,B)EE}, i.e., the largest distance in



G' between the images of neighboring nodes of G. An embedding

is said to preserve adjacency if its cost is 1. In the termi-

nology of Rosenberg et al. [131 this is called the dilation

cost. The expansion cost is the ratio of the number of nodes

in V to the number of nodes in V1. Whenever no confusion

can arise, we will refer to f as a function from G to G', and

the image of a node A of G in GI will simply be identified as

the node A in G'.
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3. Embedding of binary trees in hypercubes

We first consider a complete binary tree where each non-

leaf node has two children. A complete binary tree Td of

height d has 2d-1 nodes. The smallest hypercube large enough

to house Td is of degree d. However, this embedding of Td

into Cd cannot preserve adjacency.

Proposition 1: A complete binary tree of height d>2 cannot

be embedded in a hypercube of degree 5d such that adjacency

is preserved. In other words, a complete binary tree cannot

be embedded in a hypercube with a dilation cost of 1 and an

expansion cost less than 2.

Proof: A hypercube of degree <d has fewer nodes than Td,

hence Td cannot be embedded. Consider a mapping f of nodes

Td into a hypercube Cd of degree d. Suppose the nodes of Cd

are labeled with binary numbers between 0 and 2d as in Section

2. Without loss of generality, we may assume that the root

of Td (at level 0) is mapped onto node 0 in Cd. Note that if

the image of a level k node N of Td has t l's in its label,

the images of node N's children at level k+l have t+l or t-l

l's in their labels. Since f(level 0 node) has no l's in its

label, the following are true:

(1) f(level i node) has no more than i l's in its label.

(2) f(odd level node) has an odd number of l's in its label.

(3) f(even level node) has an even number of l's in its label.



Case 1: d is even.

The number of binary numbers of length d with an odd number

d= 2 d-l *of l's is o ( . The number of odd level nodes in Td

is 2+2 3+25 +...+ 2d-
1 = 2(2d-). But 2d-l

1 2 ( 2 d_1 ) if and only if

d>2. This shows that if d is even and d>2, there are not enough

nodes in Cd with an odd number of l's in their labels to be the

images of the odd level nodes of Td'

Case 2: d is odd.

The number of binary numbers of length d with an even number

d d-of 's is z = 2d-l The number of even level nodes in
evenTd i20+22+24+. +2 -I  2d But 2d  12 d nd

is +2+2 - 3 But 3 if and only

if d>l. This shows that if d is odd and d>l, there are not

enough nodes in Cd with an even number of l's in their labels to

be the images of the even label nodes of Td . II

For d>2, there is no adjacency-preserving embedding of Td

into Cd . However, Proposition 2 will show that if we allow

a larger hypercube (one with twice as many nodes as necessary)

as the target graph, then there is an adjacency preserving em-

bedding of Td into it. In other words, there is an embedding

with a dilation cost of 1 and an expansion cost of approximately

2. On the other hand, Proposition 3 will show that there is an

embedding of Td into Cd with a dilation cost of 2 and an expan-

sion cost of approximately 1.

r r r xiyr- i  r r i
*(x+y)r = r ) Let x = - I ,y=I; then we have 0= z (-I) =

in0 i=0[ r [ r r . r=2r-l.
and z ( ) = ( = z = 2

even i odd i even i odd i i=O

. ,, .F % r +,., ./, ,; -. , -, -. ",... * . - -' . *,, .' '. f. .d: .," ..',.



Proposition 2: A complete binary tree Td of height d (for

d>O) can be embedded in a hypercube Cd+l of degree d+l, in

such a way that the adjacencies of nodes Td are preserved.

Proof: (By induction)

Figure 1 shows how TIT 2, and T3 can be embedded in

CC 3 , and C4 with adjacency preserved (cost=1). Let fi:

Ti -. Ci+1 be an embedding of Ti into Ci+ I. Suppose fd-l

Tdl - Cd preserves adjacency and (Cd,fdl) has the follow-

ing property which we will refer to as the "free-free neigh-

bor" property: R=fdl (root of Tdl) has a free neighbor

A and A has a free neighbor B#R, i.e., {A,B}J{fdl(N)IN a

node of Td-l}. Note that (C4 ,f3 ) has the "free-free neigh-

bor" property.

Given a complete binary tree Td of height d, its left

subtree can be embedded by fOd- in 0Cd of Cd+1 , such that

OL=fdl (root) has a free neighbor OA which has a free neigh-

bor OB. The right subtree can also be embedded in a degree

d hypercube, call it Cd', using fd-I such that Rl=fA-i (root

of right subtree) has a free neighbor A' which has a free neigh-

bor B' in C'. We can now apply a rigid transformationT: CA

lCd such that T(R') is the neighbor of OA in lCd and T(A') is

the neighbor of OB in lCd. This is the same as forming a de-

gree d+l hypercube from two degree d hypercubes by making sure

that they are oriented properly using rotation and reflection

so that a node (R') and its neighbor (A') in one hypercube

match two specific neighbor nodes (OA,OB) in the other
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hypercube. This can always be done since d_3. Now the em-

bedding fd of Td into Cd+l can be defined: fd(root of Td)=OA,

fdlleft subtree=fdl fd right subtree=T(fAi). Distances

between OA and the images of the left and right children of

the root are both 1. Moreover, the free-free neighbor pro-

perty is satisfied by (Cd+l fd) since OA has a free neighbor

OB, and OB has a free neighbor T(A'). See Figure 2. By in-

duction, the above construction shows that a complete binary

tree of height d (dR-O) can be embedded in a hypercube of

degree d+l with adjacency preserved. II

Intuitively, the embedding is built up from the smaller sub-

trees. Each of the root's subtrees is embedded in one smaller

hypercube, the root is mapped into a free neighbor of its left

child's image, the right subtree's image hypercube is oriented

in such a way that the image of the right subtree's root is

a neighbor of the root's image. The free-free neighbor pro-

perty ensures that a free neighbor is available in the embed-

ding of a taller tree.

This embedding has the property that each subtree is em-

bedded with adjacency preserved in a hypercube which has about

twice the number of nodes of the subtree. The above construc-

tion also does not completely restrict how the other nodes of

the two degree d hypercubes are to be matched.

Proposition 3: A complete binary tree Td of height d (d>O) can

be embedded in a hypercube Cd of degree d with cost = 2, i.e.,

neighbors in Td are mapped into nodes of at most distance 2 away

in Cd.



Proof: Figures la,b and Figure 3 show that TIT 2 and T3 can

be embedded in CI,C2, and C3 in this way. Suppose Td_ 1 can

be embedded in Cdl by gd-i and gd-I (root of Tdl)=A and

its left and right children are L,R; (Cd 1lgd_) has the cost

2 property, i.e., distance (A,L)=2 and distance (A,R)=1; and

(gd-lCd-l) also has the following property which we will

refer to as the free neighbor property: the only free node in

Cd is a neighbor of the root A. Figure 3 shows that (C3,g3 )

has cost 2 and the free neighbor property. We can embed Td

into Cd by first embedding the left subtree (height d-l) into

the OCdl hypercube with OA being the root and 0B being the

4free neighbor of GA, then embedding the right subtree (height

d-l) into the 1Cdl hypercube with 1A being the root, lB being

the free neighbor of 1A, and OA,1A are neighbors, OB,1B are

neighbors; finally, the root is mapped to lB. Clearly, dis-

tance (gd (root) 'gd (left child) )=distance(lB,OA)=2, distance

(gd(root),gd(rightchild))=1, the free node 0B is a neighbor
of the root 1B. By induction, Td can be embedded in Cd with

cost=2. 11

The above construction shows that every node in Td is mapped

into a node distance 2 away from its left son's image and dis-

tance 1 away from its right son's image. We can also specify a

symmetric embedding so that for d>3 the left and right subtrees of

Td are mapped into OCdl and lCd in the same way so that the

nodes in the same relative position in the left and right sub-

trees of any node are neighbors of each other. More specifically,
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we can use a string S of length i in {L,R}* to denote a label

i node (O<i<d) in Td; this string S gives the path from the

root to the node. For example, LR is a level 2 node which is

the right child of the eft child of the root. SlLS2 and SIRS2

(SlS 2 E{L,R}*) are in the same relative positions in the left

and right trees of the node denoted by SI, and g(S1 LS2 ) and

g(S1 RS2 ) are neighbors of each other. See Figure 4.

Let A=a1 a2 ...ai,B=b1 b2 ...bi be the level i nodes in Td,

aj,b.E{L,R},l~jai. Suppose at positions p (ti)

a pb ; then g(A)=g(a1 a2.. .a a a +1 ...ai), g(a 1 ..a 1pIIalPll ( lPP-

b a +1 ...a ... ai), g(a l..b . ...a)

.... g(al bp ...bP2 ...bPt ...ai)=g(B) is a path of length t

in the hypercube Cd. Therefore, in this embedding the distance

between two level i nodes is at most i.

The above propositions show how a complete binary tree can

be embedded in a hypercube without greatly increasing the dila-

tion cost or the expansion cost. If a binary tree is not com-

plete, we can first complete the tree with imaginary nodes and

then embed it in a hypercube. This in general is not economi-

cal because often a smaller hypercube can house the incomplete

binary tree.

If we are interested in an adjacency preserving embedding

of an incomplete binary tree, we can construct an embedding

using the same principles as in the proofs of Propositions 2 and 3.

We start with a leaf node at the highest level, map it into a

hypercube of degree 1, and continue to put its ancestor nodes

whdch has only one child in the same hypercube if possible. We



go to a larger size hypercube if needed and always try to

have the free neighbor property (as defined in the proof

of Proposition 3) satisfied (the free-free neighbor proper-

ty as defined in the proof of Proposition 2 if possible).

When we reach a node A whose parent P has another child B,

then we can try to put B's subtree in the same hypercube

if it can be done easily, say, if it has only 3 or 4 nodes;

otherwise, we embed B's tree in another hypercube, making sure

that one of A or B's embeddings satisfies the free neigbor

property (go to a higher dimensional hypercube if necessary).

Then P can be mapped into the free neighbor in the hypercube

with the free neighbor property. Of course, if one of the

cubes has the free-free neighbor property, then P should be

mapped into that cube. The free-free neighbor and the free

neighbor properties ensure that there is a free node in the

cube for the root of the taller subtree. In general, the

hypercube (and embedding) that results from this method is

smaller than the one obtained from completing the incomplete

binary tree. For example, a subtree which is a single branch

of length m can be embedded in a hypercube of degree [log 2m]

since hypercubes are Hamiltonian. The free-neighbor property

is satisfied if the hypercube is of degree rlog2 (m+l)1. The

free-free neighbor property is satisfied if the cube is of

degree Ilog2 (m+ 2)].

S..,.%



4. k-ary trees

A k-ary tree can be turned into a binary tree by adding

rlog2k1-1 levels of nodes, i.e., at most 2[log2k]- 2 nodes

between a node and its k children. See Figure 5 for an

example. A k-ary tree of height d becomes an equivalent

binary tree of height d+(d-1)"log 2k1-1) = flog 2kld-[log 2kl+l.

The number of new nodes needed is 2 ("log2 k1d-rlg 2k1+l)-i -

number of nodes in the k-ary tree. This distance between two

adjacent nodes of the k-ary tree is rlog 2k in the binary tree.

This binary tree can be embedded in a hypercube as in Proposi-

tion 3 and we have proved the following:

Proposition 4: A k-ary tree Kd of height d can be embedded

in a hypercube of degree (d-l) [log2k1+l such that the distance

between the images of adjacent nodes of Kd is at most 2*Flog 2k. 11

If the k-ary tree Kd is complete and k=2m for some m then

the equivalent binary tree (and thus the hypercube) has less

than twice the number of nodes in Kd and the cost of the em-

bedding is 2rlog 2k1 which is small in comparison with log 2

(number of nodes in Kd). Again, if the k-ary tree is not com-

plete, we can construct the embedding using the same principle

as in the incomplete binary tree case and the images of the ima-

ginary nodes added to form the equivalent binary tree can be used

as images of real nodes in the k-ary tree.

22I



5. Graphs

A graph G with n nodes can be embedded in a hypercube of

degree [log 2n1 by simply associating nodes of the structures

in any one-to-one fashion. This embedding uses the smallest

size hypercube needed, but the dilation cost can be as high

as fl09 2n1. Another embedding method uses the spanning tree

of the graph.

A graph G=(V,E) of degree k and diameter d has a breadth-

first spanning tree S which is k-ary with height d. An edge
in E which is not an edge in S must connect only nodes in ad-

jacent levels of S by the breadth first construction. Thus

a graph can be considered as a k-ary tree with additional edges

joining nodes whose levels differ by at most one.

For any graph G, we can construct an embedding by first

.constructing its breadth-first spanning tree S, extending this

Sk-ary tree into a binary tree T, and then embedding the binary

tree in a hypercube C using the method described in Section 3.

This hypercube has degree (d-l)rlog2kl+l and 2 (d-l)[log 2kl +l

nodes. The cost of this embedding is (d-l) [log 2kl+l, since ad-

jacent nodes in G can be mapped into two leaf nodes of T which

are distance = (height of T-1) apart.

For a graph which is a k-ary tree with each leaf node con-

necting to k other leaf nodes, the costs of the embedding re-

* sulting from the above methods are almost identical and the

I cost is high. However, in both of these methods, the graph

structure was not examined nor used. By examining the structure,

one can usually get better embedding schemes with smaller costs.
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For example, a 2nx2m array can be embedded in a hypercube of de-

gree n+m with adjacency preserved in a natural way: (a) First,

embed each row i (1i- 2n) in a hypercube C(i) of degree m; thism

can be done since hypercubes are Hamiltonian; (b) then combine

c(2-1) and C (2j) (i_ -f2n-l ) into hypercube C(j) so that hyper-Cm m m+l s hthpr

cube nodes representing array nodes in the same column are con-

nected; then combine Cr2+ 1 and C2k (l-k-2n-
2 ) into hypercube

ck
Cm+2  again making sure that hypercube nodes representing array

nodes at adjacent rows and same column are connected; continuing

in this way, a hypercube Cm+n results and all adjacencies are

preserved (cost=l). If the embedding methods for general graphs

were used, the cost could be as high as m+n because the spanning

tree of the 2nx2m array is of height n+m and quite skewed.

On the other hand, there are graphs that cannot be embedded

into a hypercube with adjacency preserved no matter how large

the hypercube is. For example, any graph which contains a cycle

with length 2i+l for some i>O cannot have an adjacency preserv-

ing (cost=l) embedding. A complete graph of n nodes is another

example. However, we can have a cost 2 embedding if we use a

hypercube of degree n-l. As a matter of fact, it is easy to

see that any graph with n nodes can be embedded into a hyper-

cube of degree n-i so that adjacent nodes are mapped into nodes

distance 2 apart.



6. Concluding remarks

The hypercube is a good host graph for the embedding of net-

works of processors because of its low degree and low diameter.

Graphs such as these and arrays can be embedded into a hyper-

cube with small costs. The design of the embedding mappings

4i makes use of the structures of these graphs. In general, there

is a trade-off between the dilation cost and the expansion cost

(the size of the host hypercube). If this size is minimal,

then the dilation cost of the embedding may be as large as

log(number of nodes in the graph). On the other hand, there

is always an embedding of an n node graph into a degree n-l

hypercube with a dilation cost of 2. We have also shown that

there are classes of graphs which cannot have adjacency pre-

serving (dilation cost=l) embeddings into hypercubes of any
size.

- . . ~ ~M
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Figure 1: Embeddings of T1 , T 2  T 3 into C 2, C3, C4.
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Figure 2: The free-free-neighbor property.

In C4, A is a free neighbor of R (image of root of T3 )
B is a free neighbor of A

In C , A' is a free neighbor of R' (image of root of T)
B' is a free neighbor of A'.

T3 and T are the subtrees of T4 .

In C5 , A becomes the new root of T4
B is a free neighbor of A,
A' is a free neighbor of B.
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Figure 3: Embeddings of TV, T 2, T 3 into C1, C 2 ' C3 with dilation

costs of 2.

In C 3, the dotted line indicates that the distance

between A and B is 2.
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Figure 5: B1 ,B2 , ...,B8 are the children of node A in an
8-ary tree. 1I I 21 . . 16 are the nodes inserted
to convert the 8-ary tree to a binary tree.
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